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SIMULATION OF CONFINED PRIMITIVE ELECTROLYTES: APPLICATION
OF A NEW METHOD OF SUMMING THE COULOMB FIELD

Lianrui Zhang, Henry S. White and H. Ted Davis

Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, MN 554355

Abstract

Recently, Lekner has presented a new method to sum the Coulomb forces between
charged particles of a central system and its images extended periodically in 2 and 3-
dimensions. In this paper we apply the new method in canonical ensemble Monte Carlo
(CMC) simulations of the primitive electrolyte confined between two planar surfaces: one
is charged and the other is neutral. The anions and cations have identical size with
diameter d = 4.25 A and interact with a hard sphere repulsion and Coulomb interaction.
In Lekner’s method the long range Coulomb potential is computed from a series of Bessel
functions. We have demonstrated that the series converges after about 10 terms and so is
computationally simpler than the Ewald sum method. In our simulations, we obtained the
density distributions and mean electrostatic potentials of the confined system for the 1:1
electrolyte having concentrations equal to those of 1M and 2M bulk electrolyte and having
different surface charge densities. For large separation of confining walls, the canonical
ensemble Monte Carlo results agree with previously reported grand canonical Monte Carlo
results.
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I. Introduction

The investigation of electrolytes in confined geometry has attracted a lot cf attention
in recent years. The work has been driven by the potential for applications in electrochem-
istry, microelectronics, biological systems, colloidal dispersions, and clay and soil systems.
However, these kinds of systems are difficult to study at the molecular level, either ex-
perimentally or theoretically. Therefore computer simulation. usually either molecular
dynamics or the Monte Carle method, is a valuable tool for trying to understand ion
distributions and the double layer potential of confined electrolytes. Compared with the
minimum image method, the accuracy of a simulation is increased by periodic extension
of the system in its unconfined dimensions.

The common examples of electrical double layers are electrolytes near metal surfaces
or surrounding the particles of an electrically stabilized colloidal suspension, or the charge
distribution around the biological membranes. For point charges near a planar surface.
Gouy and Chapman developed a formal theory 70 years ago [1] to describe the charge
distributions near the surface by using the Poisson-Boltzmann equation (PBE). With the
realization of the importance of double layers in stabilizing the colloidal systems. the DLVO
theory [2] aroused a renaissance of double layer theory. Because of the advent of large fast
computers and the advancement of density functional theories, much research has been
done on double layers in recent years [3,4].

For meaningful computer simulations, one must have good models of the interparti-
cle interactions. In the case of nonpolar fluids, interactions are short-ranged and so the
introduction of cutoffs can be used to reduce the cost of computations. However. the
coulomb interactions of electrolytes are long-ranged and so it is not desirable to use a cut-
off. Although for bulk electrolyte systems the minimum image short cut has provided an
approximate method to account for the long-range forces, it may cause unphysical results
for confined systems. An alternative is to use the conventional Ewald sum method [3], but
rather lengthy summations must be evaluated by this method.

Recently, Lekner has presented a summation method that evaluates the long-range
Coulomb interactions in bulk or confined electrolytes. The interaction potential is given as
a series expansion of modified Bessel functions 1, [6,7]. The series is expected to require
evaluation of far fewer terms than does the Ewald method. To examine the applicability
of Lekner’'s method we have carried out canonical ensemble Monte Carlo (CMC) simu-
lations on confined 1:1 electrolytes having an average charge density equal to bulk ion
concentrations of 1M and 2M, respectively. Different surface charge densities and different
separations of the confining walls are studied. The results are compared to those of a
grand canonical Monte Carlo (GCMC) simulation in which the long-ranged interactions
are handled by the minimum image and the contributions from the charge distributions
everywhere outside the ion’s minimum image [3]. To further test the scheme on confined
systems, we also carried »ut an MD simulation to comrpare with the Ewald sum method
reported by Halley et al. [8]. At the same accuracy, we found Leckner's method runs
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faster.




II. Summation of Long Range Potentials

We give here a brief sketch of Lekner’s summation method [7]. Consider a simulation
box with side length L along the z and y directions and H along the z direction with .V
particles inside. To imitate the real system that is confined between two planar surfaces.
we assume the box is repeating to infinity in both r and y axis. The coulomb interaction
potential in the medium with a dielectric constant € is then

all boxes 4iq;
) — 4
L(T'”)— Z GIr'—r‘l. (1)
i<y ! ]

Here the summations over ¢ and ; are from 1 to N. If we define the relative distances in
dimensionless quantities £, 7, and (,

Q%]

£=(zi—z;)/L, n=(yi—y;)/L, (= (zi—2;)/L, (
with £ <1,n<1, and ( < H/L

Then the potential can be expressed as

L = gy 1 ’
Vo) = 2. 7 [(6+ D2 + (n +m)? + (272 3

Il m=-—o0

To sum up the potential one uses the definition of the I' function

the identity

Zexp{ (E+1) t}—\/'Zexp( 7212 /t)cos(2xlE), (3)

-0

and the integral representations of the modified Bessel function K,
Z dtexp(—n21%/t — m*t) = 2(#[%[)"1\',,(27r]lm|). (6)

After lengthy matheraatical manipulations, the potential on each particle in the central
box is given in units of g,q;/eL. by the expression

U(&.n,(¢) 4Zc ZI\O r)+m) +C2])—log(cosh(2r ) — cos(72()). (7}
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The modified Bessel function Ry(z) decays very fast with distance [6]. For an accuracy of
order 10~* we only need terms up to z = 8. If we keep terms up to z = 10 the contributions
from the long range tail will be of order ~ 107°. This is acceptable in the light of the
simulation requirement which has been discussed by others [8,9].

ITI1. Canonical Ensemble Monte Carlo Simulation

In this paper we used the canonical ensemble Monte Carlo to carry out the simulations.
The long range coulomb potential was calculated by the method give in Section II and the
calculations was accurate to higher order term must be < 10~*. The simulation was done
at different surface charge densities and concentrations for a 1:1 electrolyte. Both ion
species are hard spheres with diameter d = 4.25 A. The surface at z = 0 is charged and
the one at z = H is neutral. The temperature for the simulation was fixed at 300°K. The
parameters used in this paper are given in Table I for reference. In the table AN is the
difference of number of ions inside the box. N; and N_ are the number of positive and
negative ions with AN = N_ — N, = oA, where A = L?. n, is the bulk density of the
electrolyte which is the asymptotic value of the electrolyte and fixed to be 1 M or 2 M and
V is the volume of the box. In this paper, no = 0.046/d> or 0.092/d3.

During this simulation, the system was equilibrated for 20,000 steps to reach equilib-
rivm and another 2 x 10° steps to accumulate configurations to calculate average quantities.
The density profiles and mean electrostatic potential iy were calculated. At each step. the
particle is moved to a random position inside a sphere of radius R. The move is accepted
if the energy change is negative, i.e., éV,, < 0, and accepted with the probability

exp(—BVa) _ oo
xp(—BVon) = exp(—0B6Vam). (

w

p(n —m) =

when 6V, > 0, where n and m are initial and final states in an attempt and 3 = 1/kT with
k the Boltzmann factor and T the temperature. To accept a move with this probability.
a random number 8 is generated in the range of 0 to 1. If § < p(n — m) the move is
accepted. To sample the phase space as much as possible we vary R so that the probability
of acceptance is about 50 percent.

Every 10th of the configuration was saved during the run to accumulate the averages
for the calculation of density profiles n(z) and mean electrostatic potential ¥(z) where :
is the distance from the charged wall. The density n(z) was obtained by counting the
number of particles in slices parallel to the charged wall and dividing by the volume of the
slice. then ¥(z) is calculated via. the relation

€

an [
dv(z)z———/ dzl(z——zl)Zqin,-(:l). (9,




IV. Results and Discussion

The computed density profiles and mean electrostatic potential are reported in what
follows. Surface charge density and mean electrostatic potential are reported in the di-
mensionless forms

* Udz - .

o = — and w* = Jev. (10)
Figure 1 shows the density profiles from the CMC simulation compared with the results
from the GCMC simulations for the surface charge density ¢* = 0.42. The GCMC calcu-
lations are for an open system in equilibrium with a bulk phase at 1 M concentration. The
figure shows the density in reduced unit n;(z)/n;o, with ¢ specifving the ion species and
n;o is the bulk density corresponding to a concentration of 1M . From the figure we see
that the results of CMC and GCMC are in agreement within the variance of the simulated
results. The mean electrostatic potential from our simulations is shown in figure 2. We
have no GCMC results to compare with the electrostatic potential.

Figures 3 and 4 are the density and mean electrostatic potential profiles for the case
of 0* = 0.7 and H = 30d. Except for the small shift of the second peak in the density
profile, CMC and GCMC results are quite close and both show the layer of negative ions
at z ~ 3d/2. The mean electrostatic potentials of the CMC and GCMC calculations are
also in good agreement. '

To see how the density profiles and the mean electrostatic potentials would vary at
higher concentration A CMC simulation was carried out at a 2M concentration of a 1:1
electrolyte with ¢* = 0.396 and H = 13d. These results are shown in Figures 5 and 6. We
can see that the ion densities approach the bulk values faster than in the 1 M concentration
electrolyte. The ion densities predicted by the CMC and GCMC simulations agree well.
but the ion density profiles differ sufficiently to yield observable differences in the mean
electrostatic potential. The diffuse layer potential u""(%d) and the total potential drop
¥*(0) from CMC and GCMC are given in Table II for comparison. The errors given
in Table IT are obtained frem the difference between the mean value of half simulation
averages with the final average results. We do not know if the small differences arise
from real differences b=tween ensembles or from differences between Lekner's sum and the
minimum image potential used in the GCMC simulations.
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Table I. Parameters used in this paper, 0* = od?/e. side length L. surface separation
H, number of positive and negative ions Ny and N_, AN = N_ - Ny =04, A = L% n,

is the bulk concentration in unit 1/d>.

Ad) Ld) o Ny N_ AN no(1/d)
290 309 042 12 16 4 0.016
300 293 0.7 11 17T 6 0.046
130 450 0396 21 29 8 0.092

Table II. The diffuse layer potential u’)"(%d) and the total potential drop w*(0) for
different surface charge densities 0* and bulk concentration ny from CMC and GCMC.

Y*(z) o* ng CMC GCMC
Y*(3d)  0.42 0.046  3.13(0.13) 3.08(0.10)
0.7 0.046  5.28(0.04) 5.71(0.14)
0.396  0.092  1.83(0.006)  2.29(0.09)
¥*(0) 0.42 0.046  7.58(0.13) 7.52
0.7 0.046 12.70(0.04) 13.10
0.396 0.092 6.15(0.006) 6.47




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure Captions

Density profiles n(z)/ng for the 1:1 electrolyte at surface charge density of o* =
od?/e = 0.42 and separation H ~ 29d and concentration 1 M. Circles and black dots
for GCMC. and triangles are for CMC.

Mean electrostatic potential w*(z) for the 1:1 electrolyte for the CMC simulation of
Figure 1.

Density profiles n(z)/ng for the same conditions as in figure 1 except charge density
of 0* = 0.7 and separation H ~ 30d. Solid lines for MGC results. circles and black
dots are for MCMC. and triangles are for CMC.

Mean electrostatic potential ¥*(z) for the 1:1 electrolyte at the same conditions as in
figure 3. The dotted line corresponds to CMC results, and the dashed lines to GCMC
results.

Density profiles n(z)/ng for the 1:1 electrolyte at surface charge density of o* = 0.396
and separation H ~ 13d and concentration 2 M. Circles and black dots denote MCMC
results, and triangles denote CMC results.

Mean electrostatic potential w*(z) for the 1:1 electrolyte at the same conditions as

in figure 5. Dotted line correspond to CMC results, and dashed lines correspond to
GCMC results.
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